Manual Dexterity Activities For Adults

PMID: 26052196
This article has been cited by other articles in PMC.

Abstract

Introduction:

A dexterity exercise like this one is a fun way to play and get those muscles of the hand moving and strengthened in order to improve endurance and positioning. Looking for more fun ways to practice finger dexterity? These are some fun games and activities you may want to try: Beach Play Dough Itsy Bitsy Spider and other finger play games. Try using a soft one if you’re still developing hand coordination and dexterity, and use something more firm if you’re focusing on hand strength. Hand therapy balls usually come in different thicknesses so that you can keep yourself consistently challenged. Manual dexterity is the ability of the hands and fingers to make coordinated movements. Strong fine motor skills, such as used with writing, knitting, sewing, and other activities that involve the hands and fingers, rely on this dexterity. In young children, it is developed normally through routine activities that also require hand-eye. Fine Motor Skills for Adults – The Ultimate Collaborative List! Mandy Chamberlain MOTR/L September 20, 2016 Education & Tips for Independent Living 6 Comments I am always looking for new fine motor skills ideas, specifically when working with adults.

A dexterity exercise like this one is a fun way to play and get those muscles of the hand moving and strengthened in order to improve endurance and positioning. Looking for more fun ways to practice finger dexterity? These are some fun games and activities you may want to try: Beach Play Dough Itsy Bitsy Spider and other finger play games. Jul 20, 2018- Explore jeffreyclark777's board 'Fine Motor Dexterity & Precision Activities' on Pinterest. See more ideas about Fine motor, Infant activities and Activities for children.

Manual ability and performance of dexterity tasks require both gross and fine hand motions and coordination. The aim of this study was to determine the level of manual dexterity (capacity) and investigate its relationship with manual ability (performance) in children with cerebral palsy.

Jul 06, 2017  Combine science, problem solving, and lots of fine motor skills in one simple quiet time activity. Nature Heart Crafts – Dexterity can be developed through a wide variety of art and craft activities. These nature hearts give fingers and hands many opportunities to develop.

Method:

This study was designed as a cross-sectional study of 30 children with cerebral palsy (aged 8-15 years). In order to assess gross manual dexterity the Box and Block Test was used. Manual ability was assessed according to Manual Ability Classification System (MACS).

Results:

A relationship between the level of manual ability impairment and performance on manual dexterity tasks was expressed. Participants at MACS level IV demonstrated slowest times and transferred the smallest number of blocks (p<0.01). This study also found that correlation between Gross Motor Function Classification Scale (GMFCS) and MACS is statistically significant (p<0.001). All hand skills were more impaired in the non-dominant hand compared to the dominant hand but there were no statistically significant difference (p=0.06).

Conclusion:

The results suggest that gross manual dexterity is a good predictor of manual abilities in children with cerebral palsy. These results provide better understanding of the relationship between manual dexterity and activity limitations and lend credibility to the use of these classification systems and assessments in order to optimize treatment planning and evaluate interventions and progress. Hippokratia 2014; 18 (4): 310-314.

Keywords: Cerebral palsy, gross manual dexterity, fine finger dexterity

Introduction

Cerebral palsy (CP) is characterized by motor dysfunction caused by non-progressive brain damage, which occurs early in life1. Various impairments could affect the child's ability to respond to environmental and socio-cultural needs, including limitations in strength, sensibility, fluency, accuracy, dexterity-. The limitations can affect body structure and function, as well as activity and participation domains5.

More than a half of the children, diagnosed with CP experience various upper limb problems, of different severity and heterogeneity1-. Manual ability refers to the child's attempt to perform a particular activity. Manual ability and performance of dexterity tasks require both gross and fine hand motions and coordination. Children with CP usually have difficulties performing manual activities such as grasping, releasing or manipulating objects, which is crucial in the performance of many activities of daily life,-. Hand function problems in children with CP are often associated with problems of motor control, active range of motion, grip strength and persistence of primitive grasp reflex8, but are not always correlated with manual ability impairments,. Moreover, manual ability and achievement in motor tasks can be influenced by motivation and cognition1. Manual activities require the cooperation of both hands, where the dominant hand performs both fine and gross manipulations, and the non-dominant hand is used to stabilize objects. Children with CP develop their handedness on the less affected side. Gross manual dexterity and grip strength on both hands, followed by fine finger dexterity are the strongest predictors of manual ability, while tactile pressure detection and proprioception show lowest correlation with manual ability,13. Manual dexterity was found to be a strong predictor of functional independence in activities of daily living14,. The limited arm function is present in all types of CP, but the characteristics of the disorder vary depending on the subtypes of CP. Recent reviews of the relationship between upper limb impairments and functional abilities focused on activity limitations and restrictions in participation1,-.

The need to measure efficiency, body structure and function, activity level as well as participation outcomes effectively in children with CP is important in order to optimize treatment planning and evaluate interventions and progress. Previous studies on children with CP had a tendency to focus on analyzing their gross motor functions. However, as reviewed by some authors, many reliable and valid assessment tools became available to measure functional skills in children with CP,. This shift in focus and increasing interest in manual ability and dexterity of children diagnosed with CP improved the understanding of the condition and facilitated the design of appropriate treatments.

The general purpose of this study was to apply instruments that were not applied in this area and thus contribute to the assessment of manual ability and dexterity of children diagnosed with CP. A more specific aim of the study was to determine the level of manual dexterity (capacity) and research its relationship with manual ability (performance) in children with CP.

Materials and Methods

Participants

The study population consisted of 30 children with congenital CP aged 8-15 years [mean 11.95 standard deviation (SD) 2.56], included 17 male (56.7%) and 13 female (43.3%) participants. The sample was comprised of CP of 12 hemiparetic children (40%), 6 diparetic children (20%) and 12 quadriparetic children (40%). Nineteen children (63.3%) were right handed, 9 left handed (30%) and two ambidextrous (6.7%). Intellectual disability was present in 5 participants (16.7%).

All participants were diagnosed with spastic CP, and were able to understand the test instructions. The participants were recruited from two schools for students with special needs. The exclusion criteria were other diagnosis of CP, insufficient cooperation, surgery interventions on upper limb, and botulinum toxin injections administered in the last 6 months. The study was approved by the School's Ethical Committee. Informed consent was obtained from children's parents or guardians as well as school administrators, who were informed about the aim and course of this research.

The updating program below can disable borderless printing setting. Arcsoft document camera software. This is because borderless printing setting is enabled when printing from PhotoStudio 5.5.0.58 and 5.5.0.61.

Instruments

Motor skills were assessed using the Gross Motor Function Classification Scale (GMFCS), while manual abilities were assessed with the Manual Ability Classification System (MACS). The Box and Blocks test (BBT) was used to study manual dexterity. GMFCS and MACS were completed by the examiners who are experts in the field of special education and rehabilitation, based on their observation of the child's behaviour.

The GMFCS is a five level classification system used to determine which level best represents the child's present abilities and limitations in gross motor function. Level I, includes children with minimal or no disability, while level V, includes children who are totally dependent on external assistance for mobility.

The MACS, like the GMFCS, is a five level system, where level I includes children with minor limitations, while children with severe functional limitations are to be found at level IV and V,. Gross manual dexterity was measured using the BBT according to the procedure described by Mathiowetz26. The equipment for the BBT is consisted of a wooden box size 53.7 x 25.4 cm divided into two compartments by a partition, 15.2 cm in height. Participants were instructed to grasp the blocks (diameter of 2.5 cm) individually from one compartment of the box, transport them over the partition, and release them into the opposite compartment of the box as quickly as possible within 60 seconds. They performed the test once with each hand, starting with the dominant hand.

Statistical analysis

Descriptive statistics were used to report general characteristics of the sample. The non-parametric Kruskal Wallis analysis of variance was used to compare more than two groups with multiple comparisons of ranks as a post hoc test. The relationship between manual dexterity and MACS levels was analyzed using the Spearman rank order correlation, with correlation coefficients >0.70 considered as high, 0.50-0.70 as good, 0.30-0.50 as fair and <0.30 as weak or no association. Statistical significance was defined as a p-value of <0.0527.

Results

The largest number of children was classified at GMFCS level II and MACS level III. Fourteen children (46.7%) of the total sample were classified at GMFCS level II while 11 children (36.7%) were classified at MACS level III. Based on the type of CP, most children were classified at the highest levels (IV, V) in both classifications and they were diagnosed with quadriparesis.

In order to measure manual dexterity, the Box and Block Test was used. Firstly, the performance of these tasks was observed depending on whether they were carried out using the dominant or the non-dominant hand. Wilcoxon matched pairs test, which was used for comparison, did not show statistically significant difference (p=0.06) in the performance of the tasks regardless whether the measurements were made on the dominant or non-dominant hand (Table 1). The results of the task showed a clear trend toward significance on the gross manual dexterity task (mean value was 20.75 on the dominant hand and 16.23 on the non-dominant hand).

Table 1

Performance on the dominant and non-dominant hand on manual dexterity test.

The Kruskal Wallis test was used to analyze performance on manual dexterity tasks related to CP subgroups and MACS levels (Table 2). Multiple comparisons of ranks as a post hoc test showed statistically significant difference in gross manual dexterity (p<0.00) between hemiparetic and diparetic subgroups, as well as between hemiparetic and quadriparetic subgroups, with achievement in hemiparetic subgroup higher than in the other two. Same statistical test was used to analyze performance on manual dexterity task related to MACS levels. The participants who were classified at MACS level V were not able to perform these tasks, while the participants at MACS level IV recorded slowest and transferred the smallest number of blocks. Multiple comparisons of ranks as a post hoc test showed statistically significant difference in gross manual dexterity performance across MACS levels I-IV (p<0.01).

Table 2

Distribution of achievements on manual dexterity tests across cerebral palsy subgroups and manual ability classificationsystem (MASC) levels.

CP: cerebral palsy, MACS: manual ability classification system, GMD: gross manual dexterity, df: degrees of freedom.

Correlation between GMFCS and MACS in the sample was high (Spearman r=0.73, p<0.01). In terms of CP subgroups, the most pronounced correlation between these tests was noted in the group of children with quadriparesis (Spearman r=0.83, p<0.01), followed by the group of children with hemiparesis (Spearman r= 0.63, p< 0.03). Conversely, in the group of children with diparesis, the correlation was not statistically significant (Spearman r=0.48, p>0.05), which may be explained by the type of impairment where muscle stiffness is mainly in the legs, and small sample size (n = 6) in this subgroup.

Manual abilities represented through MACS significantly but moderately correlated with gross manual dexterity (r=-0.467, p<0.05). At the same time GMFCS levels significantly correlated with gross manual dexterity (r=-0.654, p<0.01).

Discussion

In this study participants' manual ability was initially categorized by assessing their performance when handling objects in daily life and their movement ability by measuring gross motor functions. Based on the results obtained using the MACS it can be observed that 73.33% participants required assistance in preparation and/or adaptation to the activity, otherwise they experienced limitations when performing even the simplest activities. These results are consistent with the findings of other researchers who reported that children with CP show limitations in performing activities of daily living-.

The study concurs with similar studies, where quadriparetic children are presented with considerably impaired manual abilities and gross motor functions,,-. The results revealed that the participants with quadriparesis recorded slowest and transferred the smallest number of blocks.

The degree of deformity, impairments, and motor control affected the hand function and performance of gross motor activities of CP participants. Those with pronounced deformities, contractures and reduced motor control reduced capacity and performance in carrying out everyday activities. In more than 30% of hemiparetic children impairments are present on non-paretic dominant hand13. Therefore children with CP had more problems when performing daily manual activities than gross motor abilities. These findings are in line with previous studies,,.

The correlation values across the CP subgroups were different, with the most significant correlation reported in quadriparetic children. The degree of deformity, impairments, body conditions, cognition and motivation could effect on motor skills in children with CP,-38. These findings imply that GMFCS and MACS classifications work well together. The data obtained using these two classification systems, provides for a comprehensive overview of the child's capabilities, facilitating the design of the treatment plan and monitoring.

While it is true that gross motor functions are important predictors of daily living activity in children with CP, they are not the only predictive instruments. In the present study, manual dexterity was explored with respect to CP subgroups and its relationship with manual abilities. The results emphasize the importance of manual dexterity as presented through gross manual dexterity.

Properly results on gross manual dexterity, in this study, could be explained by the fact that when manipulating bigger objects children use different manual strategies to perform the tasks contrary to fine finger dexterity, which requires more complex movements. These findings lend support to previous studies and imply that training should address gross manual dexterity, finger coordination, distal muscles strength, as well as increasing bimanual skills, which can result in developing more effective movement strategies,.

I'm noticing a very strange problem with some of our users. Microsoft outlook send button disappeared.

Results were analyzed on gross manual dexterity as associated with to MACS levels. The results revealed that the participants with quadriparesis recorded slowest and transferred the smallest number of blocks, and needed extra time when tasking.

In this study gross manual dexterity was significantly but moderately correlated with MACS. These results lend support to previous studies showing that gross manual dexterity is the strongest predictor of manual ability,13. Nevertheless, current results showed marked differences in manual dexterity depending on the level of manual ability, thus demonstrating that manual dexterity has an important impact on activity measures.

Further research is necessary in order to overcome limitations of this study, and to explore these problems on a larger sample, while taking hand impairments, training and motivation into account with the aim of providing guidelines for assessment and better planning of rehabilitation programs.

Limitations of the study

Since this cross-sectional study included a small sample of children with CP, the ability to generalize the results is limited. The composition and size of the sample may have had an effect on the absence of differences between the results related to the dominant and non-dominant hand. Moreover, the smallest number of participants was in the diparetic group of children, where the best results in manual activities can be expected. The disparity might be further explained by the fact that hemiparetic children experience problems in the non-dominant hand as well.

No other different assessment tool results were used.

Conclusions

This study investigated the relationship between manual abilities and manual dexterity in children with CP. The results showed that gross manual dexterity was the best predictor of manual abilities in children with CP. Moreover, children at a lower MACS level had more success in manual dexterity tasks. In particular, manual activities were determined by the degree of impairment. These results provide a better understanding of the relationship between manual dexterity and activity limitations and lend credibility to the usage of these classification systems and assessments to optimize treatment planning and evaluate interventions and progress.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Manual Dexterity Definition

References

1. Levitt S. Treatment of Cerebral Palsy and Motor Delay. Wiley-Blackwell, John Wiley & Sons, Chichester, United Kingdom. 2010:1–13.[Google Scholar]
2. Law K, Lee EY, Fung BK, Yan LS, Gudushauri P, Wang KW, et al. Evaluation of deformity and hand function in cerebral palsy patients. J Orthop Surg Res. 2008;3:52.[PMC free article] [PubMed] [Google Scholar]
3. Sorsdahl AB, Moe-Nilssen R, Kaale HK, Rieber J, Strand LI. Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activity-focused physiotherapy in a group setting for children with cerebral palsy. BMC Pediatr. 2010;10:26–26.[PMC free article] [PubMed] [Google Scholar]
4. Park ES, Sim EG, Rha DW. Effect of upper limb deformities on gross motor and upper limb functions in children with spastic cerebral palsy. Res Dev Disabil. 2011;32:2389–2397. [PubMed] [Google Scholar]
5. World Health Organization International Classification of Functioning, Disability and Health (ICF). World Health Organization, Geneva. 2001[Google Scholar]
6. Arnould C, Penta M, Thonnard JL. Hand impairments and their relationship with manual ability in children with cerebral palsy. J Rehabil Med. 2007;39:708–714. [PubMed] [Google Scholar]
7. Koman LA, Williams RM, Evans PJ, Richardson R, Naughton MJ, Passmore L, et al. Quantification of upper extremity function and range of motion in children with cerebral palsy. Dev Med Child Neurol. 2008;50:910–917. [PubMed] [Google Scholar]
8. Li-Tsang CWP. The hand functions of children with and without neurological motor disorders. Int J Dev Disabil. 2003;49:99–110.[Google Scholar]
9. Öhrvall AM, Eliasson AC, Löwing K, Ödman P, Krumlinde-Sundholm L. Self-care and mobility skills in children with cerebral palsy, related to their manual ability and gross motor function classifications. Dev Med Child Neurol. 2010;52:1048–1055. [PubMed] [Google Scholar]
10. Penta M, Tesio L, Arnould C, Zancan A, Thonnard JL. The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: Rasch-based validation and relationship to upper limb impairment. Stroke. 2001;32:1627–1634. [PubMed] [Google Scholar]
11. Kimmerle M, Mainwaring L, Borenstein M. The functional repertoire of the hand and its application to assessment. Am J Occup Ther. 2003;57:489–498. [PubMed] [Google Scholar]
12. Krumlinde-Sundholm L, Eliasson AC. Comparing tests of tactile sensibility: aspects relevant to testing children with spastic hemiplegia. Dev Med Child Neurol. 2002;44:604–612. [PubMed] [Google Scholar]
13. Arnould C. Hand functioning in children with cerebral palsy. Louvian la Neuve, CIACO. 2006 available from: http://www. abilhand.org/download/ABILHAND_thesis_2006.pdf, accessed: 15/01/2014. [Google Scholar]
14. Flunn NA, Trombly-Latham CA, Podolski CR. Assessing abilities and capacities: Range of motion, strength and endurance. Radomski MV, Trombly-Latham CA (eds) Occupational therapy for physical dysfunction, Lippincott Williams & Wilkins, Philadelphia. 2007:91–186.[Google Scholar]
15. Rand D, Eng JJ. Arm-hand use in healthy older adults. Am J Occup Ther. 2010;64:877–885.[PMC free article] [PubMed] [Google Scholar]
16. Arner M, Eliasson AC, Nicklasson S, Sommerstein K, Hägglund G. Hand function in cerebral palsy. Report of 367 children in a population-based longitudinal health care program. J Hand Surg Am. 2008;33:1337–1347. [PubMed] [Google Scholar]
17. Harvey A, Robin J, Morris ME, Graham HK, Baker R. A systematic review of measures of activity limitation for children with cerebral palsy. Dev Med Child Neurol. 2008;50:190–198. [PubMed] [Google Scholar]
18. Klingels K, Feys H, De Wit L, Jaspers E, Van de Winckel A, Verbeke G, et al. Arm and hand function in children with unilateral cerebral palsy: a one-year follow-up study. Eur J Paediatr Neurol. 2012;16:257–265. [PubMed] [Google Scholar]
19. McConnell K, Johnston L, Kerr C. Upper limb function and deformity in cerebral palsy: a review of classification systems. Dev Med Child Neurol. 2011;53:799–805. [PubMed] [Google Scholar]
20. Gilmore R, Sakzewski L, Boyd R. Upper limb activity measures for 5- to 16-year-old children with congenital hemiplegia: a systematic review. Dev Med Child Neurol. 2010;52:14–21. [PubMed] [Google Scholar]
21. Wagner LV, Davids JR. Assessment tools and classification systems used for the upper extremity in children with cerebral palsy. Clin Orthop Relat Res. 2012;470:1257–1271.[PMC free article] [PubMed] [Google Scholar]
22. Arnould C, Bleyenheuft Y, Thonnard JL. Hand functioning in children with cerebral pasly. Front Neurol. 2014;5:48–48.[PMC free article] [PubMed] [Google Scholar]
23. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–223. [PubMed] [Google Scholar]
24. Eliasson A, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Ohrvall A, et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48:549–554. [PubMed] [Google Scholar]
25. Gunel MK, Mutlu A, Tarsuslu T, Livanelioglu A. Relationship among the Manual Ability Classification System (MACS), the Gross Motor Function Classification System (GMFCS), and the functional status (WeeFIM) in children with spastic cerebral palsy. Eur J Pediatr. 2009;168:477–485. [PubMed] [Google Scholar]
26. Mathiowetz V, Federman S, Wiemer D. Box and Block Test of manual dexterity: Norms for 6-19 year olds. Can J Occup Ther. 1985;52:241–245.[Google Scholar]
27. Fajgelj S. Psihometrija Metod i teorija psiholo kog merenja. Centar za primenjenu psihologiju, Belgrade. 2009[Google Scholar]
28. Donkervoort M, Roebroeck M, Wiegerink D, van der Heijden-Maessen H, Stam H; Transition Research Group South West Netherlands. Determinants of functioning of adolescents and young adults with cerebral palsy. Disabil Rehabil. 2007;29:453–463. [PubMed] [Google Scholar]
29. Kerr C, McDowell B, McDonough S. The relationship between gross motor function and participation restriction in children with cerebral palsy: an exploratory analysis. Child Care Health Dev. 2007;33:22–27. [PubMed] [Google Scholar]
30. van Eck M, Dallmeijer AJ, van Lith IS, Voorman JM, Becher J. Manual ability and its relationship with daily activities in adolescents with cerebral palsy. J Rehabil Med. 2010;42:493–498. [PubMed] [Google Scholar]
31. Beckung E, Hagberg G. Neuroimpairments, activity limitations, and participation restrictions in children with cerebral palsy. Dev Med Child Neurol. 2002;44:309–316. [PubMed] [Google Scholar]
32. Carnahan KD, Arner M, Hägglund G. Association between gross motor function (GMFCS) and manual ability (MACS) in children with cerebral palsy. A population-based study of 359 children. BMC Musculoskelet Disord. 2007;8:50–50.[PMC free article] [PubMed] [Google Scholar]
33. Howard J, Soo B, Graham HK, Boyd RN, Reid S, Lanigan A, et al. Cerebral palsy in Victoria: motor types, topography and gross motor function. J Paediatr Child Health. 2005;41:479–483. [PubMed] [Google Scholar]
34. Ostensjø S, Carlberg EB, Vøllestad NK. Motor impairments in young children with cerebral palsy: relationship to gross motor function and everyday activities. Dev Med Child Neurol. 2004;46:580–589. [PubMed] [Google Scholar]

Finger Dexterity Activities

35. Park ES, Rha DW, Park JH, Park DH, Sim EG. Relation among the gross motor function, manual performance and upper limb functional measures in children with spastic cerebral palsy. Yonsei Med J. 2013;54:516–522.[PMC free article] [PubMed] [Google Scholar]
36. Klingels K, Demeyere I, Jaspers E, De Cock P, Molenaers G, Boyd R, et al. Upper limb impairments and their impact on activity measures in children with unilateral cerebral palsy. Eur J Paediatr Neurol. 2012;16:475–484. [PubMed] [Google Scholar]
37. Houwink A, Aarts PB, Geurts AC, Steenbergen B. A neurocognitive perspective on developmental disregard in children with hemiplegic cerebral palsy. Res Dev Disabil. 2011;32:2157–2163. [PubMed] [Google Scholar]
38. Chu S. Occupational therapy for children with handwriting difficulties: A framework for evaluation and treatment. Br J Occup Ther. 1997;60:514–520.[Google Scholar]
39. Ostensjø S, Carlberg EB, Vøllestad NK. Everyday functioning in young children with cerebral palsy: functional skills, caregiver assistance, and modifications of the environment. Dev Med Child Neurol. 2003;45:603–612. [PubMed] [Google Scholar]
40. Holmefur M, Krumlinde-Sundholm L, Bergström J, Eliasson AC. Longitudinal development of hand function in children with unilateral cerebral palsy. Dev Med Child Neurol. 2010;52:352–357. [PubMed] [Google Scholar]
Articles from Hippokratia are provided here courtesy of Hippokratio General Hospital of Thessaloniki
(Redirected from Manual dexterity)
Writing is a fine motor skill as it requires subtle motions of the hand and fingers.

Fine motor skill (or dexterity) is the coordination of small muscles, in movements—usually involving the synchronisation of hands and fingers—with the eyes. The complex levels of manual dexterity that humans exhibit can be attributed to and demonstrated in tasks controlled by the nervous system. Fine motor skills aid in the growth of intelligence and develop continuously throughout the stages of human development.

  • 2Developmental stages

Types of motor skills[edit]

Motor skills are movements and actions of the bone structures.[1] Typically, they are categorised into two groups: gross motor skills and fine motor skills. Gross motor skills are involved in movement and coordination of the arms, legs, and other large body parts. They involve actions such as running, crawling and swimming. Fine motor skills are involved in smaller movements that occur in the wrists, hands, fingers, feet and toes. They involve smaller actions such as picking up objects between the thumb and finger, writing carefully, and even blinking. These two motor skills work together to provide coordination.

Developmental stages[edit]

Through each developmental stage of a child’s life and throughout our lifetime motor skills gradually develop. They are first seen during a child’s development stages: infancy, toddler-hood, preschool and school age. 'Basic” fine motor skills gradually develop and are typically mastered between the ages of 6-12 in children. These skills will keep developing with age, practice and the increased use of muscles while playing sports, playing an instrument, using the computer, and writing. If deemed necessary, occupational therapy can help improve overall fine motor skills.[2]

Infancy[edit]

The first motor skills, beginning from birth, are initially characterised by involuntary reflexes.[3] The most notable involuntary reflex is the Darwinian reflex, a primitive reflex displayed in various newborn primates species. These involuntary muscle movements are temporary and often disappear after the first two months. After eight weeks, the infant will begin to voluntarily use their fingers to touch. However, their ability to grab objects is still undeveloped at this point.

Infant displaying the palmar grasp

At two to five months the infant will begin to develop hand-eye coordination, and they will start reaching for and grasping objects. In this way, they improve their overall grasping skills.

In 1952, Piaget found that even before infants are able to reach for and successfully grasp objects they see, they demonstrate competent hand-mouth coordination. A study was done by Philippe Rochat at Emory University in 1992, to test the relation between progress in the control of posture and the developmental transition from two handed to one handed engagement in reaching. It was found that the object reached for needed to be controlled. The precision of the reach is potentially maximized when placed centrally. It was also found that the posture needed to be controlled because infants that were not able to sit on their own used bimanual reaches in all postural positions except sitting upright, where they would reach one-handed. As a result, their grasping phases will not have been maximized because of the decrease in body control. On the other hand, if the infant does not have body control, it would be hard for them to get a hold of an object because their reach will be limited. As a result, the infant will just keep falling, stopping them from reaching an object because of no body control. When 'nonsitting' infants reached bimanually, while seated upright, they often ended up falling forward which prevented them from reaching toward the target. Regardless of their ability or lack of ability to control self-sitting, infants are able to adjust their two handed engagement in relation to the arrangement of the objects being reached for. Analysis of hand-to-hand distance during reaching indicates that in the prone and supine posture, non-sitting infants moved their hands simultaneously towards the midline of their bodies as they reached which is not observed by stable sitting infants in any position. Non-sitter infants, although showing strong tendencies toward bimanual reaching, tend to reach with one hand only, when placed in the seated posture. Sitter infants show a majority of differentiated reaches in all posture conditions.

A study conducted by Esther Thelen on postural control during infancy used the dynamic systems approach to observe motor development. The findings suggest that early reaching is constrained by head and shoulder instability. The relationship between posture and reaching cannot be disentangled. Thus, head control and body stability are necessary for the emergence of grasping.

The next developmental milestone is between seven and twelve months, when a series of fine motor skills begins to develop. These include, but are not limited to, increase in grip, enhancement of vision, pointing with the index finger, smoothly transferring objects from one hand to the other, as well as using the pincer grip (with the thumb and index fingers) to pick up tiny objects with precision. A lot of factors change in grasping when the infant becomes seven months. The infant will have better chance of grasping due to the fact that the infant can sit up on their own. Therefore, the infant will not fall over. The infant grasping also changes. The infant starts to hold objects more properly when age increases[4]

Toddler-hood[edit]

Writing abilities are a major fine motor skill.

By the time a child is one year old, their fine motor skills have developed to allow the manipulation of objects with greater intent.

As children manipulate objects with purpose, they gain experience identifying objects based on their shape, size, and weight. By engaging in hands-on play the child learns that some objects are heavy, requiring more force to move them; that some are small, easily slipping through the fingers; and that other objects come apart and can possibly be put back together again. This type of play is essential for the development of not only the child's fine motor skills, but also for learning how the world works.[5]

It is during this stage in the development of fine motor skills that a toddler will show hand dominance.

Preschool[edit]

Children typically attend preschool between the ages of 2 and 5. At this time, the child is capable of grasping objects using the static tripod grasp, which is the combined use of the index, thumb, and middle finger. A preschooler's motor skills are moderate, allowing the child to cut shapes out of paper, draw or trace over vertical lines with crayons, button their clothes, and pick up objects. A preferred hand dominates the majority of their activities. They also develop sensory awareness and interpret their environment by using their senses and coordinate movements based on that.[6]

After the static tripod grasp, the next form is the dynamic tripod grasp. These are shown in a series through Schneck and Henderson's Grip Form chart. Based on the accuracy and form of hold the child will be ranked either from 1-10 or 1-5 of how well they are able to complete the dynamic tripod grasp while properly writing. In conjunction with accuracy and precision the child will be able to properly position a writing utensil in terms of implement diameter as well as form and grip strength. Proper handwriting and drawing fall deeper into a category of graphomotor skills. [7]

The National Center of Teaching and Learning illustrates the abilities that preschoolers should have improved through their fine motor skills in several domains. Children use their motor skills by sorting and manipulating geometric shapes, making patterns, and using measurement tools to build their math skills. By using writing tools and reading books, they build their language and literacy. Arts and crafts activities like cutting and gluing paper, finger painting, and dressing up develops their creativity. Parents can support this development by intervening when the child does not perform the fine motor activity correctly, making use of several senses in a learning activity, and offer activities that the child will be successful with.[6]

Developmental disabilities may render a child incapable of performing certain motor activities, such as drawing or building blocks.[8] Fine motor skills acquired during this stage aids in the later advancement and understanding of subjects such as science and reading.[9] A study by the American Journal of Occupational Therapy, which included twenty-six preschoolers who had received occupational therapy on a weekly basis, showed overall advancements in their fine motor skill area. The results showed a link between in-hand manipulation, eye-hand coordination, and grasping strength with the child's motor skills, self-care and social function. In addition, these children were shown to have better mobility and self-sustainment.[2]

School age[edit]

During the ages between 5 and 7 the fine motor skills will have developed to a much higher degree, and are now being refined. As the child interacts with objects the movements of the elbows and shoulders should be less apparent, as should the movements of wrist and fingers. From the ages of 3–5 years old, girls advance their fine motor skills more than boys. Girls develop physically at an earlier age than boys; this is what allows them to advance their motor skills at a faster rate during prepubescent ages. Boys advance in gross motor skills later on at around age 5 and up. Girls are more advanced in balance and motor dexterity.[citation needed]

Children should be able to make precise cuts with scissors, for example, cutting out squares and holding them in a more common and mature manner. The child's movements should become fluid as the arms and hands become more in sync with each other. The child should also be able to write more precisely on lines, and print letters and numbers with greater clarity. In terms of motor development and athletic performance, pediatric boys[clarification needed] tend to be much more physically active than pediatric girls by nature and have a harder time staying still for long periods of time. This is due to the early development of motor skills that occurs in boys faster than it does in girls. During the first 2–3 years of elementary school, gross motor skills are similar among girls and boys with basic skills such as being able to run, jump, and toss a ball. However, boys start to develop more gross motor skills that give them an advantage in activities where girls may still be working on the basics. Boys' high energy and choice to be a part of large groups comes from their gross motor skills being developed. In general, pediatric girls tend to fall behind pediatric boys in terms of advancement of gross motor skills toward the end of elementary school.[10]https://courses.lumenlearning.com/educationalpsychology/chapter/gender-differences-in-the-classroom/

Common problems[edit]

Fine motor skills can become impaired due to injury, illness, stroke, congenital deformities, cerebral palsy, or developmental disabilities. Problems with the brain, spinal cord, peripheral nerves, muscles, or joints can also have an effect on fine motor skills, and can decrease control. If an infant or child up to age five is not developing their fine motor skills, they will show signs of difficulty controlling coordinated body movements with the hands, fingers, and face. In young children, the delay in the ability to sit up or learn to walk can be an early sign that there will be issues with fine motor skills. Children may also show signs of difficulty with tasks such as cutting with scissors, drawing lines, folding clothes, holding a pencil and writing, and zipping a zipper. These are tasks that involve fine motor skills, and if a child has difficulty with these they might have poor hand eye coordination and could need therapy to improve their skills.

Assessment[edit]

Fine motor skills can be assessed with standardized and non-standardized tests in children and adults. Fine-motor assessments can include force matching tasks. Humans exhibit a high degree of accuracy in force matching tasks where an individual is instructed to match a reference force applied to a finger with the same or different finger.[11] Humans also exhibit a high degree of accuracy during grip force matching tasks.[12] These aspects of manual dexterity are apparent in the ability of humans to effectively use tools, and perform challenging manipulation tasks such as handling unstable objects.[13] Other assessments include but are not limited to PDMS 'The Peabody Developmental Scales'.[14] PDMS is an evaluation done for children from birth till the age seven that examines the child's ability to grasp a variety of objects, the development of eye-hand coordination, and the child's overall finger dexterity.[14] Similar to PDMS, Visual-motor integration assessment, VMI-R, is an assessment that examines the visual motor integration system which demonstrates and points out possible learning disabilities that are often related to delays in visual perception and fine-motor skills such as poor hand-eye coordination.[15] Because additionally advancements in mathematics and language skills are directly corollated to the development of the fine motor system, it is essential that children acquire the fine motor skills that are needed to interact with the environment at an early stage.[16] Examples of tests include:

References[edit]

  1. ^'Fine motor control: MedlinePlus Medical Encyclopedia'. medlineplus.gov. Retrieved 2019-05-06.
  2. ^ ab'Fine Motor Outcomes in Preschool Children Who Receive Occupational Therapy Services'. Fine Motor Outcomes in Preschool Children Who Receive Occupational Therapy Services. Retrieved 26 October 2014.
  3. ^Wells, Ken R. 'Fine Motor Skills.' The Gale Encyclopedia of Children's Health: Infancy through Adolescence. Ed. Kristine Krapp and Jeffrey Wilson. Vol. 2. Detroit: Gale, 2006. 756-760. Gale Virtual Reference Library. Web. 28 Oct. 2014.
  4. ^'Fine Motor Skills & Activities for Infants & Toddlers'. Early Intervention Support.
  5. ^'Play Activities to Encourage Motor Development in Child Care'. Extension.org. Retrieved 26 November 2014.
  6. ^ ab'Domain 8: Physical Health & Development'. Domain 8: Physical Health & Development. Retrieved 9 December 2014.
  7. ^Burton, Allen. 'Grip Form and Graphomotor Control in Preschool Children'. AJOT. Retrieved 1 March 2018.
  8. ^Grissmer, David, et al. 'Fine Motor Skills And Early Comprehension Of The World: Two New School Readiness Indicators.' Developmental Psychology 46.5 (2010): 1008-1017. PsycARTICLES.
  9. ^'Fine motor skills and early comprehension of the world: Two new school readiness indicators'. APA PsycNET. Retrieved 26 October 2014.
  10. ^'School Aged Developmental Milestones'.
  11. ^Park WH, Leonard CT, Li S (August 2008). 'Finger force perception during ipsilateral and contralateral force matching tasks'. Exp Brain Res. 189 (3): 301–10. doi:10.1007/s00221-008-1424-7. PMC2889908. PMID18488212.
  12. ^Harrison LM, Mayston MJ, Johansson RS (September 2000). 'Reactive control of precision grip does not depend on fast transcortical reflex pathways in X-linked Kallmann subjects'. J. Physiol. 527 Pt 3 (3): 641–52. doi:10.1111/j.1469-7793.2000.00641.x. PMC2270096. PMID10990548.
  13. ^Venkadesan, M; Guckenheimer, John; Valero-Cuevas, Francisco J. (2007). 'Manipulating the edge of instability'. Journal of Biomechanics. 40 (8): 1653–61. doi:10.1016/j.jbiomech.2007.01.022. PMC2666355. PMID17400231.
  14. ^ abMaddox, T. (2007). Peabody developmental motor scales. In Encyclopedia of special education: A reference for the education of children, adolescents, and adults with disabilities and other exceptional individuals.
  15. ^Fuchs, D., Tenorio, Y., Bromley, M., and Fuchs, L. (2007). Visual-motor integration. In Encyclopedia of special education: A reference for the education of children, adolescents, and adults with disabilities and other exceptional individuals.CS1 maint: multiple names: authors list (link)
  16. ^Grissmer, David (2010). 'Fine motor skills and early comprehension of the world: Two new school readiness indicators'. Developmental Psychology. 46 (5): 1008–17. doi:10.1037/a0020104. PMID20822219.

External links[edit]

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Fine_motor_skill&oldid=915911597'